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ABSTRACT

The introduction of complex Navier-Stokes equations shows that
steady axisymmetric motions of viscous incompressible fluids around
conical surfaces can be expressed in terms of the corresponding
general solution of the Stokes equations of slow motions. The latter
integration is accomplished with the aid of slow-motion eigenfunctions
with integral eigenvalues for infinite plates and semi-infinite needles
and with generally complex eigenvalues for cones and conical corners.
The eigenvalues and eigenmotions obtained resemble the corresponding
eigenvalues and eigenmotions of the analogous flows past dihedral
angles. In particular, the existence of critical and branching eigen-
values reveals that laminar flows past conical surfaces depend on the
cone angle in a nonanalytic manner. The investigations include a note

on diffusor and jet flows.
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1. Introduction

Slow motions around the edge of a dihedral angle, which are governed
by the linear Stokes equations, have been extensively studied in [4, 6,
and 10], By means of "complex Navier-Stokes" equations introduced in [10]
it became possible to reveal four fundamental properties of viscous
fluid motions which .are important for the general theory of the Navier-
Stokes equations:

(D) The solutions of the Navier-Stokes equations are essentially
representable by "slow-motion eigenfunctions.,"

(II) Flow patterns of laminar motions which are "attached" or "separated"
at a sharp or blunt edge of an obstacle can be studied in an exact
manner,

(III) In contrast to inviscid fluid motions viscous fluid flows around
obstacles exhibit "critical body parameters' which prohibit analytic
parameter expansions without rigorous justification.

(IV) The Navier-Stokes equations yield solutions which represent "regular
motions" with bounded velocities and pressures,and other solutions
which describe "singular motions'" with infinite pressures and finite
or infinite velocities.

The present paper confirms the properties (I) through (IV) by investi-
gating the analogous problem of viscous fluid motions around a comical
surface. For the sake of simplicity, the derivations will be confined to
axisymmetric flows which depend on two variables. The general problem
considered includes as a special case the symmetric flow past a semi-

infinite needle which has been,briefly studied in [9].

¥
.
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2. Motions Around Conical Surfaces

Consider the steady axisymmetric motion of a viscous incompressible
fluid around a conical surface (Figs. 1 and 2), the solid angle of which
may be called '"cone angle" 2o (0 < 2¢ < 2m)., The complementary angle
28(= 21 - 2¢) is called the "corner angle" of the conical surface. For
200 = 0 the conical surfaée degenerates to a semi-infinite thin needle
and for 2o = m to an infinite flat plate. For 0 < 2¢ < 1 the conical
surface represents a cone and for 0 < 28 < 7 a conical corner.

Let (r,0) denote a polar system in the meridian plane of the axi-
symmetric motion such that 6 = * 1 designates the solid axis of the
conical surface (Fig. 1). Furthermore, let (u,v) represent the corre-
sponding radial and tangential velocity components of the motion with
the variable pressure p. If r,u,v, and p are reduced to dimensionless
variables by appropriate flow parameters which are characteristic for
the motions considered (see, for instance,[117]), then the "real Navier-

Stokes equations" can be written in the form:

1 1 cot?d - _ 2 -1
r (W 7 = oo * 2 (ug = 2v) r? (vg + W =z e *ouu
V -
+ -r— (ue V) Y (1)
1 1 1 2 . _1
T (rV)rr + 7 Voo + = (v cote)e + = ug = o Pg + uv,
\'4
+ 7 (ve + u) , 2)
(ur® sine)r + (vr sine)e =0, 3
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The latter, continuity equation, leads to the introduction of the

stream function { which is defined by

=--—.1___ =—-—1———‘ 4
¢ r’sing 0’ v r sind Yr ) )

As was shown in [10] it is advantageous to introduce the concept of
""complex laminar flows' which are described by the "complex velocity"

(U,V), the "complex pressure" P, and the "complex stream function"

Y, the real parts of which represent '"real laminar motions":

T + 7 P+ D + v
U+ T V4T _P+P , _Y¥+¥ )

u = sy V = 2 s P 2 s Y 2 .

It is easily verified that complex laminar motions are governed by the

following ''complex Navier-Stokes equations"

1 cotd 2 1D
Lew +3 o8 w20 - & ) = 3 F

06 r
+ %[(mﬁ)ur + UUHT,) + L Y Ug-v) + (U9+39-V-\7)] ; (6)
% Gv) .+ ;15 Vog T i-g— (V cot®), + ;23 Uy = zl; 136
+ %[(Uﬁ]‘)vr + U AT,) + X : v (Vgtv) + 2 (ve+Ve+U+ﬁ')] , (7)

(Urzsine)r + (Vr sine)e 0, (8)

which differ from the real Navier-Stokes equations only in their non-

linear inertial terms.
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Axisymmetric complex motions around conical surfaces are defined
as those solutions of the complex Navier~Stokes equations which satisfy

the symmetry condition

U(r,-8) =+ U(r,+8), V(r,-8) = - V(r,+8) (9)
and the nonslip condifibn

r=0, 6=*83: U=0, V=20 . (10)
When a complex solution is found, the corresponding real motion is
obtained by deleting the imaginary parts which have no physical meaning.

With the complex stream function Y defined by

U=-—1-—'—-‘¥e, ve—L v (11)
r®sing r sing T

the complex Navier-~Stokes equations (6) and (7) can be combined to the

single equation
E*Y = M(Y) (12)
for the stream function Y. The symbol E° denotes the linear differential

operator

2Y = 1 _ coth
EPY = ¥ 5 ¥pg - S22 vy (13)

and M’ the nonlinear differential operator

- sing m E°Y - m E°Y
o - 4o, (ZEL), - 0 (),

r®sin®9 r°sin®9

E2Y+E2T ) ( E2Y+Ezﬂ :l
+oy | L) Ly (AR . 14)
r(r%inze 6 ®\r®sin®e/r (
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For real stream functions { the latter nonlinear operator M reduces to
the well-known form

ool () () ] - e

r“sin“0 / 0 r*sin“0/ r

Since the Navier-Stokes equations are linear in their derivatives
of highest order,‘fhey may be considered as "almost linear" partial
differential equations. Hence, as was pointed out in[10] exact
solutions can be constructed in an absolutely linear manner by solving
at first the linear homogeneous Stokes equations of slow motions (16),
(17), and (18) which neglect all inertial terms of the Navier-Stokes
equations. Subsequently, a solution of the completevequations can be
found by integrating successively inhomogeneous linear equations which
result from the basic slow-motion solution. A detailed description
of the latter integration step is presented in [107]. In order to avoid
a formal repetition, only the general slow-motion integral may be con-
sidered further because it retains the exact properties of the flow
around the vertex of the conical surface (see [107).

3. Separable Slow-motion Integrals

According to the previous section the (complex) Stokes equations

of slow motions

1 1 cot® - _ 2 = 1p

= (rU)rr + = Uee + —;5—-(Ue 2V) = (V6+U) 2. (16)
1 1 1 2 =1 p

= (rV)rr + = Vee + = 4 cote)e + = Ue 5o Pe , (17)




NWL_REPORT NO. 1922

can be combined to the differential equation

2 4
E*Y = ‘l’rrrr + ;:3 (Yrree - COtSYrre) - F (‘i’ree - cote‘i’re)
1 _ 2cotd 1 2
2 Yeooo e teee T za (8% 3cotTO)¥eq
- 3¢90 (3 4 cot?o)y, =0
" .

(18)

for the stream function Y., Although the differential equation (18) is

not separable in the usual sense, ''separable solutions"

Y = G(r)H(O)

(19)

can still be found in the same generalized manner shown in [10]. A sub-

stitution of Eq. (19) into Eq. (18) leads to the equation

H” = 2cot6H” + [8 + 3cot®0o + % (r°6¢” - 2rc¢’) W’
mr

- [3cot8(3 + cot®6) + cotd % (*6” - 2rG’)JH’ + r* %; H =0,

which splits into the three ordinary differential equations
r?6” - 216G’ - w,G =0 ,
r*¢"” - w,6 =0 ,
H” - 2cot6H” + [8 + 3cot®s + 2w, JH”
- [3(3 + cot®p) + 2w, Jcot6H’ + w,H =0 ,

where w, and w, are arbitrary complex constants.

(20)

(21)

(22)

23)

The first two equations are of Eulerian type and can be integrated

by functions of the form

(24)
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. The corresponding characteristic equations

w = Q-0 +2), w=0-DAQ+1)N+2) (25)
yield the relationship
wy = A\ + Dy (26)
between w, and w,, so that they both may be replacéd by the exponent ).
Since the velocity must be zero at the vertex of the conical surface,
the real part of \ must fulfill the "weak regularity condition" (see
Eq. (11))
A+A>0 . @7
A stronger regularity condition will be required later on the basis of
a bounded pressure (see [10]).
The remaining fourth order differential equation (see [1])
H” - 2cot®H” + (3cot®f + 2)% + 2% + 4)H” - (3cot®6 + 2)® + 21 + 5)cotéH’
+ - +1)QA+2)H=0 (28)

can be factorized in a commutative way:

ao

a2 cotf Ji-+ A - 1)] & cotp 4 + O+ 1)+ 2)|H=0. (29)
dec de do? '

Hence, one has the two second order differential equations(X # - %)
H - cotéH’ + (\ +1)(A + 2)H =0, 390)
H - cotGH’ + (L - 1)\H = O, (31)
which assume the simple forms
(1 - H+ (L + 1)+ 2)H = 0, (32)
(1 -¢2H+ (- 1)0H=0, (33)
where the dots denote differentiation with respect to t = cos®. The
product form (29) of the differential equation (28) is not surprising
because the differential equation (30) yields the well-known potential

7
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solutions of the same problem which represent simultaneously slow
motions,

It is easily verified that the differential equatiomns (32) and (33)
are integrable with the aid of the first order associated Legendre

functions of first and second kind

PL(e) =./1 - €2 B (£), QL(e) =./1 - ¢® Qe , (34)
where the corresponding degrees v = A + 1 and v = A - 1 # 0 of the
Legendre functions P, (t) and Qv(t) may be real or complex. Thus, one
arrives at the following set of separable slow-motion integrals of the

linear differential equation (18):

v = pM25400[A P'  (cos8) + B P  (cos) + o

+ N nl
\ X e (cos®) DKQK_l(cosG)]

(35)

1
KQX+1
for A+ 1 >0 and A # 1, and

¥, = r®sin6[A P (cos0) + § tan.g + €, Q3 (cos®) + D, 5%56 ] (36)

for A = 1. The coefficients A ax, and D, are arbitrary complex

A B A
numbers. For vanishing coefficients EK and 5K the slow motion solutions

(35) and (36) represent potential flows.

4, Symmetric Slow-motion Eigenfunctions

The separable slow-motion integrals (35) and (36) represent axi-
symmetric slow motions around a conical surface if and only if the sym-
metry condition (9) and the nonslip condition (10) are satisfied. Un-
fortunately, the Legendre functions of first and second kind P,,(t) and

8
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Qv(t) are generally singular at t =+ 1 (06 =0 and © = 1), Consequently,
it is more advantageous to represent the slow-motion integrals (35) by

the associated Legendre functions

Bie) =./1 - €2 B(e), AL =/ 1 - 2 B,(0) (37)

in which the Legendre function of first kindti(t) is regular at

t=+1 (6 =0) for all degrees v.
Since the Legendre function of second kind Ik)(t) is singular at
t=+1 (6 =0) for all degrees v, the "axisymmetric slow-motion eigen-~-

functions" of conical surfaces are of the form

y  _ A2

¥y =1 EAXHX+1(COSG) + BXHX-I(COSG)] (38)
for A+ A >0 and A # 1, and

¥, = rS[Ale(cose) + B, (1 - cos6)] (39>

for » = 1, While the coefficients AX and BK are complex numbers for
complex exponents ), they can be confined to real values for real ex-

ponents. The term Hv(t) is used as an abbreviation for the function

Hy(6) =/1 - RL(E) = (L - ) B(E) (v # 0). (40)

One derives from Eqs. (32) or (33) the following recurrence formula

. _am-1) -vv+ 1) o (m =1,2,3, ...) (41)

v,ntl 2n(n + 1) Vv,n

for the coefficients of the expansion

H, () = °=Z°1 h, L - ", (42)
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After combining Eqs. (11), (16), (17), (38) and (39) one arrives
at the velocity (UX’ VK) and the pressure PX (neglecting an arbitrary

pressure constant) of the slow motions (38) and (39):

o Aram : 43
UA r [AXHX+1(COSG) + BKHX_l(cose)] , 43)
=At+2 A + B.H 8 4t
V) = o r[AH,, (cos8) + BH  (cos )1, (44)
- 20 + 2 _A-1:
=4 2t 2 A1y 8 A 45
PK o1 T x_l(cos ) | 45)
for A+ A >0 and A # 1, and
U, = r[Aiﬁe(cose) -3B8], (46)
_ 3r -
v, = PP [A H,(cos8) + B, (1 - cosd)], “47)
fa = - 12B, log(r cos® % ) 48)

for A =1,

The behavior of the pressure functions (45) and (48) shows that the
concept of "regular flows" and "singular flows", which was introduced in
[10] according as the pressure of the motion is bounded or unbounded,
applies also to motions around conical surfaces. In fact, one has the
following theorem for conical surfaces which is equivalent to the
corresponding theorem for dihedral angles.

THEOREM 1: Eigenfunctions of regular axisymmetric motions around
conical surfaces contain only 'regular eigenvalues" )\ which fulfill

the "strong regularity condition"

L—'z")‘>1 . 49)

10
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The term "strong'" regularity condition is justified iIn contrast to
the notion "weak" regularity condition which was used for Eq. (27).
In opposition to other opinions (see, for instance, [5]) it was
pointed out in [7, 9,and 10] that only regular motions appear to be
physically realistic as they exhibit the features of actually observed
flows. Furthermore,; in a paper in preparation it will be demonstrated
by means of compressible fluids that the acceptance of singular motions
leads to such objectionable consequences as, for instance, positive or
negative infinite densities.

The nonslip condition (10) and Eqs. (43), (44), (46), and (47)
lead to the homogeneous algebraic equations which determine the coef-

ficients AX and BX of the slow-motion eigenfunctions (38) and (39):

A H (cosB) + B_H

AL yHy .y (cosB) = 0
. (50)
AXHX+1(COSB) + BXHX-I(COSB) = 0
for A + A >0 and ) # 1, and
A H,(cosB) + B, (1 - cosB) =0
AIHQ(COSB> - B, =0

for A = 1.

With Hy(t) = (1 - t®)t the algebraic system (51) yields nontrivial
solutions A, and B, if and only if the corner angle 2B = ZB* satisfies
the Ycosine condition"

%
cos?p® = cos? % , (52)

which leads to B* = 120°,

11
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THEOREM 2: The "singular eigenvalue" ) = 1 of axisymmetric motions
around conical surfaces exists only for the "limiting cone" with
the cone angle 2o = 120°.

The critical angle of the limiting cone may be compared with the
critical angie 20" ~; 102° of the limiting wedge which was found in
[10]. Because the limiting wedge angle is smaller than the limiting
cone angle, a cone appears to be more critical than a wedge. This
is physically plausible since the smaller "volume'" of a cone causes
less displacement effects in a motion than the larger "volume" of a
wedge. As was pointed out in [9and 10], in a fluid motion the dis-
placement effects caused by the '"volumes" of a blunt wedge or come
(2a* < 2¢) dominate the friction effects which are caused by the
"surfaces" of the wedge or cone. At a sharp wedge or cone (2o < 20%)
one observes the opposite: the "surface" friction effects exceed
the "volume" displacement effects.

The real slow-motion eigenfunction for the limiting cone

Qo = Za* = 120°) with the singular eigenvalue ) = 1 is (a, = real
parameter)
¥y = a,r®[sind sin26 + sin® g ] . (53)

The algebraic system (50) yields nontrivial solutions (AK’ Bk) if

and only if the Wronskian determinant

W(t) = H, . (O _; (€) = B, (O (6) (54)

12
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of the two functions H (t) and H (t) vanishes at t = cosB. Thus,

A+l A1

the condition

W(cosB) = Hx+1(C°sB)ﬁx-1(°°sB) - ﬁx+1(COSB)HK_1(cosB) =0 (55)

determines the "eigenvalues" \ # 1 of axisymmetric slow motions around
a conical surface with the corner angle 28.
After differentiating Eq. (54) and applying Eqs. (32) and (33) one
has
[ ) .s (1} 2}\. + 1
W(t) =H _H -H _H =2 &=———H t)H t). 56
(€) AL A1 AL oA-1 1~ t® K+1( ) K-l( ) (56)
With W(1) = O the eigenvalue condition (55) becomes equivalent to the

"orthogonality relation"

dt
1 - t2

=0 . (57)

1
W(eos) = - 20+ D[ Hy (OF, ) (®)

cosp
Thus, the relations (40) lead to the transformed orthogonality condition

1

W(cosB) = - 2(2\ + 1)j L (©) Pt (©)de = 0 (58)

cosf

for the associated Legendre functions ‘B;\+1 (t) and '.B;\_l (t).

THEOREM 3: The eigenvalues ) # 1 of axisymmetric slow motions around a
conical surface with the corner angle B are the arithmetic means of
the degrees of those pairs of first order associated Legendre
functions of first kind !B;\_'_l (t) and Bi—l (t) which are orthogonal

over the range cosf < t < 1.

13
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It is well known (see Eq. (41)) that the Legendre functions of first
kind®P, (t) (which are regular at t = + 1 (6 = 0) by definition) assume
regular properties at t = -1 (0 = m) and degenerate to the Legendre
polynomials Pv(t)’ if and only if the degree v is an integer. Further-
more, the first order associated Legendre functions of integral degrees
O = )Py (L) = P%+1(t) and R, (t) = Pl_l(t) are orthogonal over the
range (-1 <t <+ 15. Since their product is an even function of t
for all n, they are also orthogonal over the range (0 < t < + 1).

Hence, the integers A\ = n = 2,3,4, .... are eigenvalues of axisymmetric
slow motions normal to an infinite plate (2o = 2B = m) and parallel to

a semi~infinite thin needle (B = m). Vice versa, it is not difficult

to prove that the integers A = n = 2,3,4, .... are the only eigenvalues
of axisymmetric slow motions past an infinite plate and around a semi-
infinite needle. Indeed, for the infinite plate problem the analyticity
of any slow-motion eigenfunction (38) at the origin r = 0 follows from
the analyticity of the boundary conditions (see [3 and 5]). Hence, the
Legendre functions 33X+1(t) and ?3K_1(t) must degenerate to the Legendre
polynomials Pn+1(t) and Pn_l(t) of the integral degrees \ = n = 2,

3,4, «os« .+ The same follows directly for the semi-infinite needle

problem as the eigenfunctions (38) must all vanish at the needle

With the eigenvalues of axisymmetric slow motions past an infinite
plate A = n = 2,3,4, .... one obtains the corresponding real eigen-
functions (a, = real parameters):

14
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P _(0)
_ nt2 ntl
Iy = ar sin® [P%+1(cose) - ;T——EE; P;_l(cose)] . (60)
n-1

The eigenvalues of axisymmetric slow motions around a semi-infinite

thin needle A = n = 2,3,4, .... lead to the corresponding real eigen~-

functions (an = real parameters):

1 -
Prag (- 1)

Iy = anrn+zsine [ P%H‘l (cosf) -~ P%l-l (cos®) ] . (61)

Ph-1(- 1)
This result confirms the integral which was found in [ 9] for the same
needle problem by Taylor series expansions. In particular, one concludes
from

By (- 1)

="'2 n é 06'.
u, ar coso [ 1+ (€0s0) e D

ﬁn_l(coseé]
. (62)
Pii(-1) .

+ anrnsinze [Pn+1(cose) - = Pn_l(cose)]
Pn-l(- D

that all radial velocity components u vanish at 68 = 0. Hence, as was
pointed out in [ 9] any viscous fluid passes along an infinitely thin needle
(which has neither volume causing displacement nor surface causing
friction) in an undisturbed manner without producing any shear stress
at the needle.
Since the first order associated Legendre functions of first kind

and integral degree P;+1(t) and P;_l(t) are only orthogonal over the
ranges (0 < t <1) and (-1 <t <+ 1), one has the following theorem.
THEOREM 4: Regular integral eigenvalues A(# 1) of axisymmetric slow

motions around a conical surface exist if and only if the conical

15
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surface degenerates to an infinite plate (2o = 28 = m) or a semi-
infinite needle (2o = 0) in which cases all eigenvalues coincide
with the integers A = n = 2,3,4, cees .
For axisymmetric slow motions around cones (0 < 2o < 1) and into conical
corners (0 < 28 < 1) the leading eigenvalues )\ # 1 have been computed by
solving Eq. (55). This has been accomplished by truncating the series
expansion of W(cosB)‘after some appropriate term of N-th order in

(1 - cosB). With the recurrence formula (41) the remaining polynomial

_of order (2N - 3) in A

W(cosB) ~ - gz J_an(l - cosB)n(n - 25+ 1)n h 0 (63)

1,5 A-1,n-3+1

retained sufficient accuracy for the leading eigenvalues of interest.
Numerical results are presented in Tables 1 and 2 and in Fig. 3.

The numerical results confirm theorem 4 and show that almost all
of the slow-motion eigenfunctions of cones (0 < 2¢ < 1) and of conical
corners (0 < 28 < 1) are characterized by complex eigenvalues. A
comparison with the results presented in [10] reveals that the eigen-
values of symmetric slow motions past dihedral angles and around conical
surfaces display essentially the same involved structure. In particular,
the existence of branch points shows that the eigenvalues of slow motions
around dihedral angles and conical surfaces depend on the corresponding
wedge or cone angles in a nonanalytic manner.

It is easily verified that the real eigenfunctions of slow motions

past conical surfaces, which are characterized by complex eigenvalues,
describe eddy-type flows of the same sort as the amalogous eigenfunctions

16
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of slow motions around dihedral angles (see [4, 6, and 10]). However,
the general real solution,which is the real part of the linear com-
bination (see [2, 3, 5, and 11])

Y = ¥y (64)

where the sum must be extended over all eigenvalues )\ with non-
negative imaginary parts, includes also the eddy-free motions of -
practical interest.

5. Note on Diffusor and Jet Flows

Since the product (29) is commutative, the complex exponents )\ are
symmetric to the point )\ = - 1/2. Hence if )\ is an eigenvalue of a
conical surface, which satisfies the strong regularity condition
A+ X > 2 for the vertex r = 0, then pn = - (A + 1) is an eigenvalue
of the same surface which fulfills the strong regularity condition
o+ E < - 4 at infinity (r = «), and vice versa. The corresponding
eigenfunction Yu(r,e) = rSYK( % ,0) represents a 'regular" slow
motion which has neither sources nor sinks at infinity.

If one applies the same "inversion procedure" (see [10]) to a slow-
motion eigenfunction of a conical surface which is weakly singular at
the vertex r = 0 (0 < \ + X< 2), then one arrives at a slow-motion
eigenfunction which describes a source or sink flow at infinity (r = «).
This reveals the fact that weakly singular motions around sharp cones
with angles 2o < 20% = 120° (see Theorem 2) are truly "singular" as
they exhibit a source or sink of infinitesimal strength at the vertex

of the cone (see [9 and 10]).

17
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The reversible inversion property -of regu15;>motions past conical
surfaces is only unilateral for weakly singular motions. Indeed, while
the singular eigenvalue )\ = 1 exists only for the limiting cone with the
angle 20" = 120°, the eigenvalue p = ~ (A + 1) = - 2 exists for all
conical surfaces (0 £ 2o <2:1). The corresponding slow-motion eigen-

function is (a., = real parameter)

o= 2a;2(cos6 - 1)[ (cos® + 1)cosd - (3cos?B - ], (65)

-2
which differs from Ackerberg's solution presented in [1] by an additive
constant that adjusts the stream function w*e(r,e) to the conventional
condition {_,(r,0) = 0. It may be noted that the slow-motion eigen-
function (65) excludes the possibility of Ackerberg's non-existence paradox
for the infinite flat plate (2o = 2B = n). In fact, the general solution
Y of the complex Navier-Stokes equation (12), which is bounded at r = «,

is of the form (see [10])

¥ = ¥ (r,0) + ¥ (r,0) (66)

where Yg is the general solution of the analogous slow-motion problem
containing the r-independent eigenfunction (65) and all eigenfunctions
that are regular at r = o, Accordingly, Ackerberg's solution (see [1])
is in error because the function YM(r,e), which adjusts Ys to a solution
of the full Navier=-Stokes equation (12), cannot degenerate to a finite
sum, unless it vanishes identically together with Yg = 0 (see [10]).
Furthermore, Ackerberg based his solution only on the slow-motion
solution (65) and failed to observe the existence of an infinite number
of slow-motion. eigenfunctions which are all regular at r = », As was
pointed out in [10] for 0 < 2o < m and 0 < 2B < 7 the function ¥y
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contains only terms of the separable form (38) because the eigenvalues
w == (A + 1) constitute an arithmetic progression only for 2¢ = 0 and
200 = 2B = 11 (see Theorem 4). In the latter case the fundamental system
of separable slow-motion solutions (38) must be extended by the so-

called "associated" separable slow-motion solutions of order m
P

m
m _ 3 _
Y)\ = a)\m )\. (m—l, 2’ 3’ L ] )’ (67)

which were introduced in [10].
For example, the associated separable solution of first order is
of the form (see Eq. (38)):

1 A2 1 1
=
YK T log r[AKHX 1(cose) + BX x_l(cose)] o
68

+ r>‘+2[A1 <L g 1(cose) + B

R
y 5x B ~ Hl_l(cose)].

1
A
In general, the solutions (67) involve the functions (log r)m
(m=0,1, 2, ... ) and the "associated functions"

N

m
Hv = SR Hv(cose) (m=1, 2, 3, eee ) . (69)

The latter functions satisfy the recurrence relation (m = 1, 2, 3, «eo )

a0 m -1 -2
-t + v(AHDE + m(2v+1)HT + m(m-l)H$ =0 . (70)

For instance, the first order associated function Hi(t) is a particular
solution of the inhomogeneous differential equation

(1-t2)ﬁ$ + v(v+1)Ht = - @vtDH, , (71)

which is regular at t = 1. Since the inhomogeneous portion of Eq. (71)
is a homogeneous solution of the reduced equation, no solution Hi
degenerates to a polynomial even if the exponent v is an integer.

Nevertheless, an exact solution can be found in the form
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1

= gl Y -
Hv = Sv(t) + Iv' Hv(t) log(1+t) (v # 0, 1), (72)

in which St reduces to a polynomial of order n =(|v + 1/2| - 1/2) if the
exponent v is an integer v =1, £ 2, £ 3, ,.. . After substituting
Eq. (72) into Eq. (71) and applying Eq. (40)one arrives at the dif-~
ferential equation (v # 0, - 1)
1-t2)55 + vr1)s)

-2 -0 v, - (rtpe® - (wil-pd, |, o9
in which for v =1, * 2, * 3, ,,. the inhomogeneous portion reduces
to a polynomial of order n =(lv + 1/2| - 1/2) which is lower than the
order of the homogeneous polynomial solution Hv(t)' Hence, the dif-
ferential equation (73) yields, indeed, a polynomial solution of the
order stated above.

According to these derivations the general solution of the full
Navier-Stokes equations, which describes laminar motions along an
infinite flat plate (2o = 28 = 1) with an orifice at the origin
r = 0 and with a source or sink of finite strength at infinity

(r = »), is of the form (see [10]):
- «© _2- n=-2 j
Ve D@0, by = e 2 Fi(e) (log )7 (74)

After some algebra one arrives at the following two leading terms of the

asymptotic expansion (74) (a_2 and a_; are real parameters):

g, = Yo = 2a_, (t° - 1) (t = cos®), (75)
2
0.3 = F Q-0 (+e) (ag+922, 1og LE ) - 22, (312e42¢2) 7] . (76)
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It may be noted that the analogous needle (2 = 0) and limiting cone
Qo = Zd* = 120°) problems, which also seem to have caused certain dif-
ficulties in Ackerberg's investigations [1], are solvable withoﬁt the
knowlgdge of the associated separable slow-motion solutions (67).

Since the slow-motion solution (65) is the leading term in any
asymptotic expansion of a laminar flow along a conical surface with an
orifice at the vértex r = 0 and a source and sink distribution of finite
strength at r = o, it is useful to investigate the corresponding flow
pattern. As the velocity components

u g = 6a_2 é%-(cosze - cos®B), v.g =0 a7n

show, one has a strictly radial diffusor-type flow for all corner angles
0 < 2B < m (see Fig. 4a). However, for all cone angles 0 < 2¢ < 7 the
motion assumes the character of a jet-type flow as shown in Fig. 4b. In
the 1imiting case of the semi-infinite needle 2o = O the motion is again
of the diffusor type. A comparison with the analogous result presented
in [10] reveals that the velocities of plane and axisymmetric diffusor and
jet flows with radial stream lines depend on the polar angle 6 In exactly
the same manner., While the complete Navier-Stokes equations yield a so-
lution which represents a strictly radial diffusor or jet flow in the
plane case (see the Jeffery - Hamel solution in [8 and 10]), no such
integral exists in the axisymmetric case.

For exact solutions of the Navier-Stokes equations of the form

¢ = rF(0) see the papers of H. B. Squire [iZ and 13] .
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Fig. 1:

Axisymmetric flow past a cone

Fig., 2:

Axisymmetric flow into a conical corner
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b.

Fig. 4: a. Radial diffusor-type flow for 0 < 28 < T .

b. Radial jet-type flow for 0 <2 < T .
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